Deep Fully Convolutional Network-Based Spatial Distribution Prediction for Hyperspectral Image Classification

Deep Fully Convolutional Network-Based Spatial Distribution Prediction for Hyperspectral Image Classification

Abstract:

Most of the existing spatial-spectral-based hyperspectral image classification (HSIC) methods mainly extract the spatial-spectral information by combining the pixels in a small neighborhood or aggregating the statistical and morphological characteristics. However, those strategies can only generate shallow appearance features with limited representative ability for classes with high interclass similarity and spatial diversity and therefore reduce the classification accuracy. To this end, we present a novel HSIC framework, named deep multiscale spatial-spectral feature extraction algorithm, which focuses on learning effective discriminant features for HSIC. First, the well pretrained deep fully convolutional network based on VGG-verydeep-16 is introduced to excavate the potential deep multiscale spatial structural information in the proposed hyperspectral imaging framework. Then, the spectral feature and the deep multiscale spatial feature are fused by adopting the weighted fusion method. Finally, the fusion feature is put into a generic classifier to obtain the pixelwise classification. Compared with the existing spectral-spatial-based classification techniques, the proposed method provides the state-of-the-art performance and is much more effective, especially for images with high nonlinear distribution and spatial diversity.
Deep Fully Convolutional Network-Based Spatial Distribution Prediction for Hyperspectral Image Classification
Published in: IEEE Transactions on Geoscience and Remote Sensing Volume: 55Issue: 10, Oct. 2017 )
Date of Publication: 03 July 2017

What we provide:

  • Complete Research Assistance

Technology Involved:-

  • MATLAB, Simulink, MATPOWER, GRIDLAB-D,OpenDSS, ETAP, GAMS

Deliverables:-  

  • Complete Code of this paper
  • Complete Code of the approach to be propose
  • A document containing complete explanation of code and research approach
  • All materials used for this research
  • Solution to all your queries related to your work